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Abstract Harold Hodes in [1] introduces an extension of first-order modal logic featuring
a backtracking operator, and provides a possible worlds semantics, according
to which the operator is a kind of device for ‘world travel’; he does not provide a proof
theory. In this paper, I provide a natural deduction system for modal logic featuring
this operator, and argue that the system can be motivated in terms of a reading of the
backtracking operator whereby it serves to indicate modal scope. I prove soundness
and completeness theorems with respect to Hodes’ semantics, as well as semantics
with fewer restrictions on the accessibility relation (Hodes restricts his attention
to S5).
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1 Introduction
Harold Hodes in [1] introduces an extension of first-order modal logic featuring a
backtracking operator ‘↓’. The purpose of this operator is similar to that of an actuality
operator. But, instead of exempting what follows from the scope of all enclosing
modal operators, it exempts it only from the innermost modal operator. Or, in terms
of the possible worlds semantics, instead of causing a formula to be evaluated at some
specified ‘actual’ world, the backtracking operator causes a formula to be evaluated
at the ‘last visited’ world, so to speak.

J.Hodes gives a semantics (which I give an overview of in Section 2), but does not
supply a proof theory.1 This semantics reflects a reading of the operator as one which
allows more flexible ‘travel’ through worlds in evaluating the truth value of a formula.
If the semantics of _ and ♦ are thought of as instructions to travel to an accessible
world in which the truth value of a formula is evaluated, Hodes’ semantics for ↓ gives
instructions to travel back to the world most recently passed through, to evaluate the
truth value of a formula there. A useful comparison is to the actuality operator. The
usual semantics for an actuality operator gives directions to evaluate the truth value
of a formula at a privileged possible world in the model—the actual world.








Философия. Текст 2.

               But, as mentioned, there is another—more syntactic—reading of the operator, as
a scope indicator. That is, the operator simply indicates that what follows it is to be
exempt from the scope of the innermost modal operator. Again, compare with the
actuality operator; this may be taken to be an indicator that what follows is to be
evaluated as exempt from the scope of all enclosing modal operators. Thus, the role
of ↓ is akin to that of parentheses, yet allowing for more nuanced scope distinctions.
The aim of this paper is to provide a proof system for modal logics featuring the
operator, which I will claim does justice to this reading; the proof theory gives rules
for ‘looking inside’ the scope of a modal operator, and then, when the ↓ operator is
encountered, pulling the appended formula out of that scope.
As well as explaining this alternative reading of the operator, such a proof theory
may be desirable from the point of view of certain philosophical or other uses of
modal logic. For example, extensions of modal logic may be desired to gain expressive
power without committing oneself to quantifying over possible worlds (or their
analogues) or to the members of domains of possible worlds. In some cases, modal
logic may be introduced specifically for the purposes of avoiding quantification over
some entities or other. A proof theory would allow somebody not to rely on the
semantics to give sense to claims involving ↓.2
                     Nonetheless, even if one is not persuaded of the need for a proof theory for such
purposes, the fact that the operator appears to admit of the syntactic reading should
be motivation enough to develop a proof theory which represents such a reading.
Before presenting the proof system, in Section 2 I will give an overview of the
semantics which Hodes provides for the operator, albeit with a few minor differences.
In Section 3 I present a natural deduction system for the operator for propositional
modal logic featuring the operator, which makes uses of labelling each line of a proof.
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2 Semantics

Let L↓ be a typical language for propositional modal logic; it consists of countably
many propositional variables p,q, r, . . ., connectives ∧ and ¬ and a necessity
operator _. In addition, it shall have an additional sentential operator ↓, called the
backtracking operator. The intended effect of the backtracking operator will be to
exempt what follows it from the scope of the innermost modal operator from which
it is not already exempt (so, for example, p, _↓p and __↓↓p should all be counted
as equivalent). Other sentential connectives ∨,→and a possibility operator ♦ can be
defined in the usual way.
The semantics presented here is essentially that of [1], with the main differences
being: (a) Hodes’ semantics is for quantified modal logic, whereas I will
only describe the case for propositional modal logic (I discuss extending to quantified
modal logic briefly in Section 7). (b) Hodes’ logic is an extension of S5, so
that the accessibility relation is an equivalence, whereas the only restriction on the
equivalence relation here is that it is serial. (c) Hodes only defines satisfaction for
a certain class of formulas, whereas the semantics presented here places no such
restriction.
A model is a triple M = _W,R, a_, where W is a set (of possible worlds), R ⊆
W ЧW is the accessibility relation, and a is an assignment function which assigns to
each propositional variable p at a world w ∈ W a truth value a(w, p) ∈ {T,F}.
Only one restraint will be placed on the accessibility relation for now, and that is
that it is serial. So, for any w ∈ W there is a w
 ∈ W such that wRw
.
Then, a satisfaction relation is defined, not for each world, but for each finite
sequence of worlds of the appropriate type. So, we first make the following
definition:
Definition 1 Given a modelM, a world sequence is a member of the following set:
WSM
= {_w1, . . . , wk_ : k ≥ 1, ∀i ≤ k,wi ∈ W and ∀i < k,wi Rwi+1}
As a result of seriality, for every world sequence there will be a world sequence
extending it (and so there are world sequences of arbitrary length). The sequence of
worlds at which a formula is evaluated may be thought of as a kind of memory, which
keeps track of which worlds have been travelled through.
Some terminology for members of WSM will be useful. I shall write w for an
arbitrary member of WSM. Where w = _w1, . . . , wk_, then:
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Before proving that the inference rules given here are both sound and complete with
respect to the semantics, I would first like to say more about the motivation behind
the proof theory. There are two aims which I have. The first concerns a worry which
may be had if the proof theory is wanted in order to avoid reliance on the possible
worlds semantics for more than pragmatic reasons. Itmight be worried that, due to the
presence of labels—which it is tempting to take as referring to worlds or sequences
of worlds—the proof theory does not succeed in avoiding reliance on the possible
worlds semantics. Secondly, I claimed before that the natural deduction system can
be seen as explaining the reading of the ↓ operator as exempting formulas from the
scope of other operators. Here I will argue for that claim.
One way in which we may try to motivate the proof system is by reference to the
semantics. On this view, a labelled formula is a formula of a kind of extended language,
and the labels are something like variables referring to sequences of worlds.
Then, a formula (of the extended language) φ; s makes the claim that φ is true at the
sequence of worlds s. The inference rules then aim to capture certain valid inferences
in this language. A soundness theorem will then be an essential part of the motivation
of the proof theory, in that it will show that the inference rules are indeed valid
inference rules—that is, they are truth preserving in the sense of the semantics. (This
will also require an extension of the semantics given in Section 2 so that labelled
formulas are given satisfaction conditions.)
But given one motivation for developing a proof theory, this will not do. There
are potential philosophical applications of such a proof theory whose aim is to
Natural Deduction for Modal Logic with a Backtracking Operator
avoid reference to, and quantification over, worlds. That is, they wish to relegate
the semantics to a purely secondary, pragmatic role. But if the proof theory is ultimately
motivated by the semantics, then this can not be the case. In any case, such a
motivation would fail to shed light on the scope exemption reading of the ↓ operator.
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So, instead, we wish to have a motivation for the proof theory which derives from
this scope exemption reading of the operator. Then, a soundness theorem will not play
a role in motivating the proof theory in light of the semantics, but will rather play the
role—along with a completeness theorem—of motivating the pragmatic value of the
semantics. For, given a soundness theorem, one will be able to use the semantics for
useful ends, in proving that a certain formula is not derivable from other formulas,
and so on.
How might such a motivation look? Firstly, labels must not be thought of as
referring to worlds. Indeed, it should be borne in mind that they are not part of the language
at all. They are merely part of the proof theory, and can be explained as a kind
of bookkeeping device, not dissimilar to the use of line numbers, the lists of undischarged
assumptions which are common in many ways of laying out formal proofs,
or even to the various horizontal and vertical lines which appear in many ways of laying
out proofs. It is perhaps better to think, not of labelled formulas, but of labelled
lines (it just happens that it is simpler for metatheoretical purposes to treat labels as
attaching to formulas).
If labels are not part of the language, then there can be no danger that they refer to
anything in the semantics (just as line numbers and the like do not). Indeed, labelled
formulas are not the kind of thing that can be asserted, or the kind of thing that have
truth-conditions or satisfaction-conditions. Since labelled formulas are not the kind
of thing that can be true or false, and the inference rules are relations between labelled
formulas, it follows that the inference rules can not be motivated in terms of validity
(i.e. necessary truth preservation). A different motivation is thus required.
The main rules which need motivating are the _ and ↓ rules. These can be motivated,
not in terms of validity, but rather as rules for temporarily ignoring, and then
reinstating, modal operators, whilst the labels serve as a reminder as to when a modal
operator is being ignored. So, rather than serving as a memory of worlds, s serves as
a memory of modal scope.
